Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Eur Rev Med Pharmacol Sci ; 24(20): 10879-10884, 2020 10.
Article in English | MEDLINE | ID: covidwho-1068256

ABSTRACT

OBJECTIVE: Among the illnesses that may develop from COVID-19, the disease caused by the novel coronavirus (SARS-CoV-2), is pneumonia, a severe acute respiratory infectious disease. SARS-CoV-2 continues to spread worldwide and has caused hundreds of thousands of deaths thus far and has disrupted the world economy. PATIENTS AND METHODS: This review summarized the reported distributions of SARS-CoV-2 in 13 biological samples of the human body, including nose, feces, sperm, tears, breast milk, cerebrospinal fluid, urine, organs, sputum, cell lines, bronchial brush, blood, throat, and bronchoalveolar lavage fluid. Moreover, this review briefly describes the detection of SARS-CoV-2 in human body samples of five other coronaviruses. CONCLUSIONS: This review offers several recommendations for controlling the spread of SARS-CoV-2 control, specifically, sample collection from suspected cases from foreign countries and risk assessment of imported special goods (biological materials).


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Breast/virology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/cerebrospinal fluid , Coronavirus Infections/urine , Early Diagnosis , Feces/virology , Female , Humans , Male , Nose/virology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/cerebrospinal fluid , Pneumonia, Viral/urine , SARS-CoV-2 , Spermatozoa/virology , Sputum/virology , Tears/virology
3.
Rev Assoc Med Bras (1992) ; 66Suppl 2(Suppl 2): 112-117, 2020.
Article in English | MEDLINE | ID: covidwho-1043455

ABSTRACT

OBJECTIVE: We aimed to present a review of renal changes in patients with COVID-19. METHODS: We performed a systematic review of the literature to identify original articles regarding clinical, laboratory, and anatomopathological kidney changes in patients infected with SARS-CoV-2 published until May 7, 2020. The search was carried out across PubMed, Scopus, and Embase using the keywords "COVID-19", "coronavirus", "SARS-CoV-2", "kidney injury" and "kidney disease". Fifteen studies presented clinical and laboratory renal changes in patients with COVID-19, and three addressed anatomopathological changes. DISCUSSION: Acute kidney injury (AKI) was a relevant finding in patients with COVID-19. There were also significant changes in laboratory tests that indicated kidney injury, such as increased serum creatinine and blood urea nitrogen (BUN), proteinuria, and hematuria. The presence of laboratory abnormalities and AKI were significant in severely ill patients. There was a considerable prevalence of AKI among groups of patients who died of COVID-19. Histopathological analysis of the kidney tissue of patients infected with SARS-CoV-2 suggested that the virus may directly affect the kidneys. CONCLUSION: Although COVID-19 affects mainly the lungs, it can also impact the kidneys. Increased serum creatinine and BUN, hematuria, proteinuria, and AKI were frequent findings in patients with severe COVID-19 and were related to an increased mortality rate. Further studies focusing on renal changes and their implications for the clinical condition of patients infected with the novel coronavirus are needed.


Subject(s)
Acute Kidney Injury/etiology , Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Pneumonia, Viral/complications , Acute Kidney Injury/physiopathology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Coronavirus Infections/urine , Creatinine/blood , Hematuria/etiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Pneumonia, Viral/urine , Proteinuria/etiology , SARS-CoV-2 , Urine/chemistry
4.
Nat Commun ; 11(1): 5859, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-933687

ABSTRACT

The outbreak of COVID-19 has become a worldwide pandemic. The pathogenesis of this infectious disease and how it differs from other drivers of pneumonia is unclear. Here we analyze urine samples from COVID-19 infection cases, healthy donors and non-COVID-19 pneumonia cases using quantitative proteomics. The molecular changes suggest that immunosuppression and tight junction impairment occur in the early stage of COVID-19 infection. Further subgrouping of COVID-19 patients into moderate and severe types shows that an activated immune response emerges in severely affected patients. We propose a two-stage mechanism of pathogenesis for this unusual viral infection. Our data advance our understanding of the clinical features of COVID-19 infections and provide a resource for future mechanistic and therapeutics studies.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Betacoronavirus/pathogenicity , Biomarkers/urine , COVID-19 , Coronavirus Infections/urine , Disease Progression , Humans , Immune Tolerance , Pandemics , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/urine , Pneumonia, Viral/urine , Proteome/analysis , SARS-CoV-2 , Tight Junctions/pathology
5.
JAMA Netw Open ; 3(10): e2023934, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-893183

ABSTRACT

Importance: The coronavirus disease 2019 (COVID-19) pandemic has placed unprecedented stress on health systems across the world, and reliable estimates of risk for adverse hospital outcomes are needed. Objective: To quantify admission laboratory and comorbidity features associated with critical illness and mortality risk across 6 Eastern Massachusetts hospitals. Design, Setting, and Participants: Retrospective cohort study of all individuals admitted to the hospital who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by polymerase chain reaction across these 6 hospitals through June 5, 2020, using hospital course, prior diagnoses, and laboratory values in emergency department and inpatient settings from 2 academic medical centers and 4 community hospitals. The data were extracted on June 11, 2020, and the analysis was conducted from June to July 2020. Exposures: SARS-CoV-2. Main Outcomes and Measures: Severe illness defined by admission to intensive care unit, mechanical ventilation, or death. Results: Of 2511 hospitalized individuals who tested positive for SARS-CoV-2 (of whom 50.9% were male, 53.9% White, and 27.0% Hispanic, with a mean [SD ]age of 62.6 [19.0] years), 215 (8.6%) were admitted to the intensive care unit, 164 (6.5%) required mechanical ventilation, and 292 (11.6%) died. L1-regression models developed in 3 of these hospitals yielded an area under the receiver operating characteristic curve of 0.807 for severe illness and 0.847 for mortality in the 3 held-out hospitals. In total, 212 of 292 deaths (72.6%) occurred in the highest-risk mortality quintile. Conclusions and Relevance: In this cohort, specific admission laboratory studies in concert with sociodemographic features and prior diagnosis facilitated risk stratification among individuals hospitalized for COVID-19.


Subject(s)
Coronavirus Infections/complications , Critical Illness , Hospital Mortality/trends , Pneumonia, Viral/complications , Adult , Aged , Aged, 80 and over , Area Under Curve , Betacoronavirus/pathogenicity , Blood Urea Nitrogen , C-Reactive Protein/analysis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/urine , Creatinine/analysis , Creatinine/blood , Critical Illness/epidemiology , Eosinophils , Erythrocyte Count/methods , Female , Glucose/analysis , Hospitalization/statistics & numerical data , Humans , Hydro-Lyases/analysis , Hydro-Lyases/blood , Lymphocyte Count/methods , Male , Massachusetts/epidemiology , Middle Aged , Monocytes , Neutrophils , Pandemics , Platelet Count/methods , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Polymerase Chain Reaction/methods , ROC Curve , Retrospective Studies , SARS-CoV-2 , Troponin T/analysis , Troponin T/blood
6.
Emerg Infect Dis ; 26(10): 2497-2499, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-836160

ABSTRACT

Along with positive SARS-CoV-2 RNA in nasopharyngeal swabs, viral RNA was detectable at high concentration for >3 weeks in fecal samples from 12 mildly symptomatic and asymptomatic children with COVID-19 in Seoul, South Korea. Saliva also tested positive during the early phase of infection. If proven infectious, feces and saliva could serve as transmission sources.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Feces/virology , Nasopharynx/virology , Pneumonia, Viral/virology , RNA, Viral/analysis , Saliva/virology , Adolescent , Asymptomatic Infections , COVID-19 , Child , Child, Preschool , Coronavirus Infections/transmission , Coronavirus Infections/urine , Humans , Infant , Infant, Newborn , Pandemics , Plasma/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/urine , Republic of Korea , SARS-CoV-2 , Urine/virology , Viral Load
8.
Curr Opin Urol ; 30(5): 735-739, 2020 09.
Article in English | MEDLINE | ID: covidwho-669954

ABSTRACT

PURPOSE OF REVIEW: Despite the plethora of publications discussing the severe respiratory coronavirus 2 (SARS-CoV-2), evidence of viral secretion in urine is sparse. RECENT FINDINGS: We could identify 34 publications including a total of 2172 patients. Among those, 549 patients were tested for SARS-CoV-2 secretion in urine, which was detected in only 38 patients (6.9%). Within the seven studies displaying positive results, the majority of positive patients (86.8%) was from not yet peer-reviewed studies including weak data and heterogeneous techniques for sample testing. Furthermore, none of the studies available in the literature addressed the virulence of detected viral RNA in urine. SUMMARY: Overall, only seven studies were able to detect SARS-CoV-2 secretion in urine, all of them with a considerably low rate of positivity. However, these studies were of rather low quality considering their methodology. Despite this, as SARS-CoV-2 has been detected in urine, it is of importance to discuss safety and urinary hygiene protocols. Until further research provides valid data on viral shedding and virulence in urine, potential risk of transmission through urine cannot be ruled out. Therefore, safety and hygiene measures need to be discussed.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/urine , Pneumonia, Viral/urine , Virus Shedding , COVID-19 , Humans , Pandemics , SARS-CoV-2
10.
Crit Care ; 24(1): 356, 2020 06 18.
Article in English | MEDLINE | ID: covidwho-603793

ABSTRACT

BACKGROUND: The aim of this study is to assess the prevalence of abnormal urine analysis and kidney dysfunction in COVID-19 patients and to determine the association of acute kidney injury (AKI) with the severity and prognosis of COVID-19 patients. METHODS: The electronic database of Embase and PubMed were searched for relevant studies. A meta-analysis of eligible studies that reported the prevalence of abnormal urine analysis and kidney dysfunction in COVID-19 was performed. The incidences of AKI were compared between severe versus non-severe patients and survivors versus non-survivors. RESULTS: A total of 24 studies involving 4963 confirmed COVID-19 patients were included. The proportions of patients with elevation of sCr and BUN levels were 9.6% (95% CI 5.7-13.5%) and 13.7% (95% CI 5.5-21.9%), respectively. Of all patients, 57.2% (95% CI 40.6-73.8%) had proteinuria, 38.8% (95% CI 26.3-51.3%) had proteinuria +, and 10.6% (95% CI 7.9-13.3%) had proteinuria ++ or +++. The overall incidence of AKI in all COVID-19 patients was 4.5% (95% CI 3.0-6.0%), while the incidence of AKI was 1.3% (95% CI 0.2-2.4%), 2.8% (95% CI 1.4-4.2%), and 36.4% (95% CI 14.6-58.3%) in mild or moderate cases, severe cases, and critical cases, respectively. Meanwhile, the incidence of AKI was 52.9%(95% CI 34.5-71.4%), 0.7% (95% CI - 0.3-1.8%) in non-survivors and survivors, respectively. Continuous renal replacement therapy (CRRT) was required in 5.6% (95% CI 2.6-8.6%) severe patients, 0.1% (95% CI - 0.1-0.2%) non-severe patients and 15.6% (95% CI 10.8-20.5%) non-survivors and 0.4% (95% CI - 0.2-1.0%) survivors, respectively. CONCLUSION: The incidence of abnormal urine analysis and kidney dysfunction in COVID-19 was high and AKI is closely associated with the severity and prognosis of COVID-19 patients. Therefore, it is important to increase awareness of kidney dysfunction in COVID-19 patients.


Subject(s)
Acute Kidney Injury/epidemiology , Acute Kidney Injury/virology , Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Acute Kidney Injury/urine , COVID-19 , Coronavirus Infections/urine , Humans , Pandemics , Pneumonia, Viral/urine , Prevalence , SARS-CoV-2
11.
Intensive Care Med ; 46(7): 1339-1348, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-597960

ABSTRACT

Acute kidney injury (AKI) has been reported in up to 25% of critically-ill patients with SARS-CoV-2 infection, especially in those with underlying comorbidities. AKI is associated with high mortality rates in this setting, especially when renal replacement therapy is required. Several studies have highlighted changes in urinary sediment, including proteinuria and hematuria, and evidence of urinary SARS-CoV-2 excretion, suggesting the presence of a renal reservoir for the virus. The pathophysiology of COVID-19 associated AKI could be related to unspecific mechanisms but also to COVID-specific mechanisms such as direct cellular injury resulting from viral entry through the receptor (ACE2) which is highly expressed in the kidney, an imbalanced renin-angotensin-aldosteron system, pro-inflammatory cytokines elicited by the viral infection and thrombotic events. Non-specific mechanisms include haemodynamic alterations, right heart failure, high levels of PEEP in patients requiring mechanical ventilation, hypovolemia, administration of nephrotoxic drugs and nosocomial sepsis. To date, there is no specific treatment for COVID-19 induced AKI. A number of investigational agents are being explored for antiviral/immunomodulatory treatment of COVID-19 and their impact on AKI is still unknown. Indications, timing and modalities of renal replacement therapy currently rely on non-specific data focusing on patients with sepsis. Further studies focusing on AKI in COVID-19 patients are urgently warranted in order to predict the risk of AKI, to identify the exact mechanisms of renal injury and to suggest targeted interventions.


Subject(s)
Acute Kidney Injury/virology , Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Pneumonia, Viral/complications , Renin-Angiotensin System/physiology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Betacoronavirus/physiology , Blood Coagulation Disorders/virology , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/urine , Creatinine/blood , Critical Illness , Hematuria/etiology , Humans , Kidney/physiopathology , Kidney/virology , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/urine , Proteinuria/etiology , SARS-CoV-2 , Urinalysis , Urine/chemistry , Urine/virology
14.
Emerg Microbes Infect ; 9(1): 991-993, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-133551

ABSTRACT

SARS-CoV-2 caused a major outbreak of severe pneumonia (COVID-19) in humans. Viral RNA was detected in multiple organs in COVID-19 patients. However, infectious SARS-CoV-2 was only isolated from respiratory specimens. Here, infectious SARS-CoV-2 was successfully isolated from urine of a COVID-19 patient. The virus isolated could infect new susceptible cells and was recognized by its' own patient sera. Appropriate precautions should be taken to avoid transmission from urine.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/urine , Coronavirus Infections/virology , Pneumonia, Viral/urine , Pneumonia, Viral/virology , Aged , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/transmission , Genome, Viral/genetics , Humans , Male , Pandemics , Pneumonia, Viral/transmission , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Vero Cells
16.
Clin Chem Lab Med ; 58(7): 1121-1124, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-52616

ABSTRACT

Background Among patients with coronavirus disease 2019 (COVID-19), the cases of a significant proportion of patients are severe. A viral nucleic acid test is used for the diagnosis of COVID-19, and some hematological indicators have been used in the auxiliary diagnosis and identification of the severity of COVID-19. Regarding body fluid samples, except for being used for nucleic acid testing, the relationship between COVID-19 and routine body fluid parameters is not known. Our aim was to investigate the value of urine biochemical parameters in the prediction of the severity of COVID-19. Methods A total of 119 patients with COVID-19 were enrolled at Renmin Hospital of Wuhan University. According to the severity of COVID-19, the patients were divided into three groups (moderate 67, severe 42 and critical 10), and 45 healthy persons were enrolled in the same period as healthy controls. The relationship between the results of urine biochemical parameters and the severity of COVID-19 was analyzed. Results The positive rates of urine occult blood (BLOOD) and proteinuria (PRO) were higher in COVID-19 patients than in healthy controls (p < 0.05); the urine specific gravity (SG) value was lower in patients than in healthy controls (p < 0.05), and the urine potential of hydrogen (pH) value was higher in patients than in healthy controls (p < 0.01). The positive rates of urine glucose (GLU-U) and PRO in the severe and critical groups were higher than those in the moderate group (p < 0.01 and p < 0.05, respectively); other biochemical parameters of urine were not associated with the severity of COVID-19. Conclusions Some urine biochemical parameters are different between patients with severe acute respiratory syndrome (SARS)-CoV-2 and healthy controls, and GLU-U and PRO may be helpful for the differentiation of COVID-19 severity.


Subject(s)
Biomarkers/urine , Coronavirus Infections/urine , Pneumonia, Viral/urine , Urine/chemistry , Aged , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus/metabolism , Coronavirus/pathogenicity , Coronavirus Infections/metabolism , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL